
1

Digital Speech ProcessingDigital Speech Processing——
Lecture 20Lecture 20

The Hidden Markov The Hidden Markov 
Model (HMM)Model (HMM)
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Lecture OutlineLecture Outline
• Theory of Markov Models

– discrete Markov processes
– hidden Markov processes

• Solutions to the Three Basic Problems of HMM’s
– computation of observation probability
– determination of optimal state sequence
– optimal training of model

• Variations of elements of the HMM
– model types
– densities

• Implementation Issues
– scaling
– multiple observation sequences
– initial parameter estimates
– insufficient training data

• Implementation of Isolated Word Recognizer Using HMM’s
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Stochastic Signal ModelingStochastic Signal Modeling
• Reasons for Interest:

– basis for theoretical description of signal 
processing algorithms

– can learn about signal source properties
– models work well in practice in real world 

applications
• Types of Signal Models

– deteministic, parametric models
– stochastic models
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Discrete Markov ProcessesDiscrete Markov Processes
{ }1 2System of  distinct states, , ,..., NN S S S

− − −⎡ ⎤ ⎡ ⎤= = = = = =⎣ ⎦ ⎣ ⎦
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Time( )  1     2     3     4      5    ...
State                  ...

Markov Property:

| , ,... |t i t j t k t i t j

t
q q q q q

P q S q S q S P q S q S



5

Properties of State Transition CoefficientsProperties of State Transition Coefficients
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Consider processes where state transitions are 
time independent, i.e.,
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Example of Discrete Markov Example of Discrete Markov 
ProcessProcess

Once each day (e.g., at noon), the weather is observed 
and classified as being one of the following:

– State 1—Rain (or Snow; e.g. precipitation)
– State 2—Cloudy
– State 3—Sunny

with state transition probabilities:

{ }
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

ijA a
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Discrete Markov ProcessDiscrete Markov Process
Problem: Given that the weather on day 1 is sunny, what 

is the probability (according to the model) that the 
weather for the next 7 days will be “sunny-sunny-rain-
rain-sunny-cloudy-sunny”?

Solution: We define the observation sequence, O, as:

{ }= 3 3 3 1 1 3 2 3, , , , , , ,O S S S S S S S S

and we want to calculate P(O|Model).  That is:

[ ]= 3 3 3 1 1 3 2 3( | Model) , , , , , , , | ModelP O P S S S S S S S S
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Discrete Markov ProcessDiscrete Markov Process

[ ]
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Discrete Markov ProcessDiscrete Markov Process
Problem: Given that the model is in a known 

state, what is the probability it stays in that state 
for exactly d days?

Solution:

{ }

( ) ( ) −

∞

=

= ≠

+

= = − =

= =
−∑

1
1

1

, , ,..., ,

1 2 3 1

| Model,  (1 ) ( )

1( )
1

i i i i j i

d
i ii ii i

i i
d ii

O S S S S S S

d d

P O q S a a p d

d d p d
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ExerciseExercise

Given a single fair coin, i.e., P (H=Heads)= 
P (T=Tails) = 0.5, which you toss once and observe 
Tails:

a) what is the probability that the next 10 tosses will 
provide the sequence {H H T H T T H T T H}?

SOLUTION:SOLUTION:

For a fair coin, with independent coin tosses, the probability of 
any specific observation sequence of length 10 (10 tosses) is 
(1/2)10 since there are 210 such sequences and all are equally 
probable.  Thus:

P (H H T H T T H T T H) = (1/2)10
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ExerciseExercise

b) what is the probability that the next 10 
tosses will produce the sequence {H H 
H H H H H H H H}?

SOLUTION:SOLUTION:

Similarly:

P (H H H H H H H H H H)= (1/2)10

Thus a specified run of length 10 is equally as likely as 
a specified run of interlaced H and T.
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ExerciseExercise
c) what is the probability that 5 of the next 10 tosses will

be tails?  What is the expected number of tails over 
the next 10 tosses?

=

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑
1010

0

10 1(Number of  in 10 coin tosses) 5
2d

E T d
d

Thus, on average, there will be 5H and 5T in 10 tosses, but the probability 
of exactly 5H and 5T is only about 0.25.

SOLUTION:SOLUTION:

The probability of 5 tails in the next 10 tosses is just the number of observation 
sequences with 5 tails and 5 heads (in any sequence) and this is:

P (5H, 5T)=(10C5) (1/2)10 = 252/1024≈0.25
since there are (10C5) combinations (ways of getting 5H and 5T) for 10 coin 
tosses, and each sequence has probability of (1/2)10 .  The expected number of 
tails in 10 tosses is:
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Coin Toss ModelsCoin Toss Models
A series of coin tossing experiments is performed.  The 
number of coins is unknown; only the results of each coin 
toss are revealed.  Thus a typical observation sequence is:

= =1 2 3... ...TO O O O O HHTTTHTTH H
Problem: Build an HMM to explain the observation sequence.

Issues:

1. What are the states in the model?

2. How many states should be used?

3. What are the state transition probabilities?
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Coin Toss ModelsCoin Toss Models
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Coin Toss ModelsCoin Toss Models
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Coin Toss ModelsCoin Toss Models
Problem: Consider an HMM representation (model λ) of a coin 
tossing experiment.  Assume a 3-state model (corresponding to 3 
different coins) with probabilities:

0.750.250.5P(T)
0.250.750.5P(H)

State 3State 2State 1

and with all state transition probabilities equal to 1/3.  (Assume initial state 
probabilities of 1/3).

a) You observe the sequence:   O=H H H H T H T T T T

What state sequence is most likely?  What is the probability of the 
observation sequence and this most likely state sequence?
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Coin Toss Problem SolutionCoin Toss Problem Solution
SOLUTION:SOLUTION:

Given O=HHHHTHTTTT, the most likely state 
sequence is the one for which the probability of 
each individual observation is maximum.  Thus for 
each H, the most likely state is S2 and for each T 
the most likely state is S3.  Thus the most likely 
state sequence is:

S= S2 S2 S2 S2 S3 S2 S3 S3 S3 S3

The probability of O and S (given the model) is:

λ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

10
10 1( , | ) (0.75)

3
P O S
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Coin Toss ModelsCoin Toss Models
b) What is the probability that the observation sequence came entirely 

from state 1?

SOLUTION:SOLUTION:

The probability of O given that S is of the form:

λ

λ λ

λ
λ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

1 1 1 1 1 1 1 1 1 1

10
10

10

ˆ

is:

1ˆ( , | ) (0.50)
3

ˆThe ratio of ( , | ) to ( , | ) is:

( , | ) 3 57.67ˆ 2( , | )

S S S S S S S S S S S

P O S

P O S P O S

P O SR
P O S
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Coin Toss ModelsCoin Toss Models
c) Consider the observation sequence:

=�O HT T HTHHTTH
How would your answers to parts a and b change?

SOLUTION:SOLUTION:

    Given  which has the same number of 's and 's, the answers to
    parts a and b would remain the same as the most likely states occur
    the same number of times in both cases.

O H T�
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Coin Toss ModelsCoin Toss Models
d) If the state transition probabilities were of the form:

= = =

= = =

= = =

11 21 31

12 22 32

13 23 33

0.9, 0.45, 0.45
0.05, 0.1, 0.45
0.05, 0.45, 0.1

a a a
a a a
a a a

i.e., a new model λ’, how would your answers to parts a-c 
change?  What does this suggest about the type of sequences 
generated by the models?



21

Coin Toss Problem SolutionCoin Toss Problem Solution

( ) ( )6 310

10 9

SOLUTION:
The new probability of  and  becomes:

1          ( , | ) (0.75) 0.1 0.45
3

ˆ    The new probability of  and  becomes:
1ˆ          ( , | ) (0.50) (0.9)
3

    The ratio is:

   

O S

P O S

O S

P O S

λ

λ

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

10 6 3
53 1 1       1.36 10

2 9 2
R −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Coin Toss Problem SolutionCoin Toss Problem Solution

λ

λ

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

�

�

�

10 6 3

10 9

Now the probability of  and  is not the same as the probability of 
and .  We now have:

1          ( , | ) (0.75) (0.45) (0.1)
3
1ˆ( , | ) (0.50) (0.9)
3

with the ratio:

          

O S O
S

P O S

P O S

λ
λ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′

10 6 3
33 1 1 1.24 10

2 2 9
Model , the initial model, clearly favors long runs of 's or 's,
whereas model , the new model, clearly favors random sequences
of 's and 's.  Thus even a 

R

H T

H T
λ

λ
′

run of 's or 's is more likely to
occur in state 1 for model , and a random sequence of 's and 's
is more likely to occur in states 2 and 3 for model .

H T
H T
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Balls in Urns ModelBalls in Urns Model
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Elements of an HMMElements of an HMM

{ }

{ }ν ν ν

=

∈

=

i
i

i
i

1 2

1 2

1. ,  number of states in the model
states, , ,...,
state at time ,

2. , number of distinct observation symbols per state
           observation symbols, , ,...,

observation at time

N

t

M

N
S S S S

t q S
M

V

{ }

{ }
ν

+

∈

=

= = = ≤ ≤

=

⎡ ⎤= = ≤ ≤ ≤ ≤⎣ ⎦

1

 ,

3. State transition probability distribution, ,

( | ), 1 ,

4. Observation symbol probability distribution in state 

( )

( )  at | , 1 , 1

5. Initial st

t

ij

ij t j t i

j

j k t j

t O V

A a

a P q S q S i j N

j

B b k

b k P t q S j N k M

{ }
[ ]

π

π

Π =

= = ≤ ≤1

ate distribution, 

, 1
i

i iP q S i N
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HMM Generator of ObservationsHMM Generator of Observations

ν

=

Π
=

=

11. Choose an initial state, , according to the initial state
distribution, .
2. Set 1.
3. Choose according to the symbol probability distribution
in state , namely ( ).
4. Transit to a new 

i

t k

i i

q S

t
O

S b k

( )λ

+ =

= + ≤

Π

1state,  according to the state transition

probability distribution for state , namely .

5. Set 1;  return to step 3 if ;  otherwise terminate the procedure.

Notation:  = , , --HMM

t j

i ij

q S

S a

t t t T

A B

OT…O6O5O4O3O2O1
observation

qT…q6q5q4q3q2q1state
T…654321t
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Three Basic HMM ProblemsThree Basic HMM Problems
( )λ λ

=

Π
1 2--Given the observation sequence, ... , and a model

= , , , how do we (efficiently) compute ( | ), the probability of the
observation sequence?

--Given the observation sequence

TO O O O
A B P O

Problem 1

Problem 2

( )λ

λ

=

=

Π

1 2

1 2

, ... , how do we 
choose a state sequence ...  which is optimal in some meaningful
sense?

--How do we adjust the model parameters = , ,  to maximize
( | )?

Interpretation:

T

T

O O O O
Q q q q

A B
P O
Problem 3

Problem --Evaluation or scoring problem.
--Learn structure problem.
--Training problem.

1
Problem 2
Problem 3
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Solution to Problem 1Solution to Problem 1——P(O|P(O|λλ))

λ

λ π

λ λ λ

λ λ

−

=

= ⋅

=

= ⋅

= ∑

1 2

1 1 2 2 3 1

1 2

1 2

all 

Consider the state sequence (there are  such sequences):
...

Then
( | , ) ( ) ( )... ( )

( | ) ...

and
( , | ) ( | , ) ( | )

Finally
( | ) ( , | )

(

T

T T

T

T

q q q T

q q q q q q q

Q

N
Q q q q

P O Q b O b O b O

P Q a a a

P O Q P O Q P Q

P O P O Q

P

fixed 

λ π
−

=

≈ ⋅ = = ⇒ ⋅ ⋅

≈

∑ 1 1 1 2 2 1
1 2

1 2
, ,...,

100

72

| ) ( ) ( )... ( )

Calculations required 2 ; 5, 100 2 100 5
10  computations!

T T T
T

q q q q q q q q T
q q q

T

O b O a b O a b O

T N N T
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The “Forward” ProcedureThe “Forward” Procedure

1 2

Consider the forward variable, ( ), defined as the probability of the
partial observation sequence (until time )  state  at time , given
the model, i.e.,

( ) ( ... , | )

Inductively so

t

i

t t t i

i
t S t

i P O O O q S

α

α λ= =

and

1 1

1 1
1

1 2
1 1

2

lve for ( ) as:
    1. 

( ) ( ), 1
    2. 

( ) ( ) ( ), 1 1,

    3. 

( | ) ( ... , | ) ( )

Computation:  

t

i i

N

t t ij j t
i

N N

T T i T
i i

i

i b O i N

j i a b O t T i j N

P O P O O O q S i

N

α

α π

α α

λ λ α

+ +
=

= =

= ≤ ≤

⎡ ⎤
= ≤ ≤ − ≤ ≤⎢ ⎥
⎣ ⎦

= = =

∑

∑ ∑

Initialization

Induction

Termination

72 versus 2 ; 5, 100 2500 versus 10TT TN N T= = ⇒
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The “Forward” ProcedureThe “Forward” Procedure
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The “Backward” AlgorithmThe “Backward” Algorithm
β

β λ+ +

+

= =1 2

Consider the backward variable, ( ), defined as the probability of
the partial observation sequence from 1 to the end, given state

 at time , and the model, i.e., 

  ( ) ( ... | , )

t

i

t t t T t i

i
t

S t

i P O O O q S

β

β β+ +
=

= ≤ ≤

= = − − ≤ ≤

⋅

∑ 1 1
1

2

1. 
          ( ) 1, 1
2. 

( ) ( ) ( ), 1, 2,...,1, 1

 calculations, same as in forward case

T

N

t ij j t t
j

i i N

i a b O j t T T i N

N T

Inductive Solution :
Initialization

Induction
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Solution to Problem 2Solution to Problem 2——Optimal Optimal 
State SequenceState Sequence

⇒

⇒

1. Choose states, , which are  most likely 
    maximize expected number of correct individual states
2. Choose states, , which are  most likely 
    maximize expected number o

t

t

q individually

q pair - wise

⇒

⇒

f correct state pairs
3. Choose states, , which are  most likely 
    maximize expected number of correct state triples
4. Choose states, , which are  most likely 
    find the sing

t

t

q triple - wise

q T - wise
λle best state sequence which maximizes ( , | )

This solution is often called the Viterbi state sequence because
it is found using the Viterbi algorithm.

P Q O
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Maximize Individual StatesMaximize Individual States
We define ( ) as the probability of being in state  at time ,
given the observation sequence, and the model, i.e.,

( , | )           ( ) ( | , )
( | )

then

( , | )( )
( , | )

t i

t i
t t i

t i
t

t i

i S t

P q S Oi P q S O
P O

P q S Oi
P q S O

γ

λ
γ λ

λ

λ
γ

λ

=
= = =

=
=

=

[ ]

1 1

1

1

( ) ( ) ( ) ( )
( | ) ( ) ( )

with

            ( ) 1,

then

             argmax ( ) , 1

:   need not obey state transition constraints.

t t t t
N N

t t
i i

N

t
i

t t
i N

t

i i i i
P O i i

i t

q i t T

q

α β α β
λ α β

γ

γ

= =

=

∗

≤ ≤

∗

= =

= ∀

= ≤ ≤

∑ ∑

∑

Problem
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Best State SequenceBest State Sequence——The The 
ViterbiViterbi AlgorithmAlgorithm

[ ]
1 2 1

1 2 1 1 2, ,...,

Define ( ) as the highest probability along a single path, 
at time , which accounts for the first  observations, i.e.,

         ( ) max ... , , ... |  

We must keep tra
t

t

t t t tq q q

i
t t

i P q q q q i O O O

δ

δ λ
−

−= =

ck of the state sequence which gave the 
best path, at time , to state .  We do this in the array ( ).tt i iψ
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The The ViterbiViterbi AlgorithmAlgorithm

( )

δ π
ψ

δ δ

ψ δ

−≤ ≤

−
≤ ≤

= ≤ ≤

= ≤ ≤

⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦

⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦

1 1

1

11

1
1

           ( ) ( ), 1
( ) 0, 1

           ( ) max ( ) , 2 , 1

( ) argmax ( ) , 2 , 1

i i

t t ij j ti N

t t ij
i N

i b O i N
i i N

j i a b O t T j N

j i a t T j N

Step 1- -Initialization

Step 2 - -Recursion

Step 3 - -Termination
[ ]

[ ]

( )

δ

δ

ψ

∗

≤ ≤

∗

≤ ≤

∗ ∗
+

=

=

= = − −

≈ ∗

1

1

t+1 1

2

            max ( )

argmax ( )

             , 1, 2,...,1

Calculation  operations ( ,+)

Ti N

T T
i N

t t

P i

q i

q q t T T

N T

Step 4 - -Path (State Sequence) Backtracking
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Alternative Alternative ViterbiViterbi ImplementationImplementation

( )
( ) ( )

( )

( )

1 1 1

1

1
1

log 1

log 1 , 1

log 1 ,

( ) log( ( )) , 1
( ) 0, 1

( ) log( (j))=max ( ) , 2

i i

i t i t

ij ij

i i

t t t ij j t
i N

i N

b O b O i N t T

a a i j N

i i b O i N
i i N

j i a b O

π π

δ δ π

ψ

δ δ δ −
≤ ≤

= ≤ ≤

⎡ ⎤= ≤ ≤ ≤ ≤⎣ ⎦
⎡ ⎤= ≤ ≤⎣ ⎦

= = + ≤ ≤

= ≤ ≤

⎡ ⎤= + +⎣ ⎦

Step 1- -Initialization

Step 2 - -Recursion

�
�

�

�� �

�� � �

1
1

1

1

1 1
2

, 1

( ) argmax ( ) , 2 , 1

max ( ) , 1

argmax ( ) , 1

( ), 1, 2,...,1

t t ij
i N

Ti N

T T
i N

t t t

t T j N

j i a t T j N

P i i N

q i i N

q q t T T

N T

ψ δ

δ

δ

ψ

−
≤ ≤

∗

≤ ≤

∗

≤ ≤

∗ ∗
+ +

≤ ≤ ≤ ≤

⎡ ⎤= + ≤ ≤ ≤ ≤⎣ ⎦

⎡ ⎤= ≤ ≤⎣ ⎦

⎡ ⎤= ≤ ≤⎣ ⎦

= = − −

≈

Step 3 - -Termination

Step 4 - -Backtracking

Calculation

� �

� �

�

additions
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ProblemProblem
Given the model of the coin toss experiment used earlier (i.e., 3 
different coins) with probabilities:

0.750.250.5P(T)
0.250.750.5P(H)

State 3State 2State 1

with all state transition probabilities equal to 1/3, and with initial 
state probabilities equal to 1/3.  For the observation sequence O=H 
H H H T H T T T T, find the Viterbi path of maximum likelihood.
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Problem SolutionProblem Solution

( )
δ δ δ

δ

δ

= = =

≤ ≤

=

1 1 1

2

Since all  terms are equal to 1/3, we can omit these terms (as well as

the initial state probability term) giving:
(1) 0.5, (2) 0.75, (3) 0.25

The recursion for ( ) gives 2 10

(1) (0.75)(0.5)

ij

t

a

j t

δ δ

δ δ δ

δ δ δ

δ δ δ

δ

= =

= = =

= = =

= = =

=

2
2 2

2 3 2
3 3 3

3 4 3
4 4 4

4 4 5
5 5 5

6

, (2) (0.75) , (3) (0.75)(0.25)

(1) (0.75) (0.5), (2) (0.75) , (3) (0.75) (0.25)

(1) (0.75) (0.5), (2) (0.75) , (3) (0.75) (0.25)

(1) (0.75) (0.5), (2) (0.75) (0.25), (3) (0.75)

(1) (0.75 δ δ

δ δ δ

δ δ δ

δ δ δ

δ

= =

= = =

= = =

= = =

5 6 5
6 6

6 6 7
7 7 7

7 7 8
8 8 8

8 8 9
9 9 9

10

) (0.5), (2) (0.75) , (3) (0.75) (0.25)

(1) (0.75) (0.5), (2) (0.75) (0.25), (3) (0.75)

(1) (0.75) (0.5), (2) (0.75) (0.25), (3) (0.75)

(1) (0.75) (0.5), (2) (0.75) (0.25), (3) (0.75)

δ δ= = =9 9 10
10 10(1) (0.75) (0.5), (2) (0.75) (0.25), (3) (0.75)

This leads to a diagram (trellis) of the form:
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Solution to Problem 3Solution to Problem 3——the Training Problemthe Training Problem

• no globally optimum solution is known
• all solutions yield local optima

– can get solution via gradient techniques
– can use a re-estimation procedure such as the Baum-Welch or 

EM method

• consider re-estimation procedures
– basic idea: given a current model estimate, λ, compute 

expected values of model events, then refine the model based 
on the computed values

[ ] [ ]λ λ λ
ξ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⋅⋅ ⋅

+

Model Events Model Events(0) (1) (2)

Define ( , ), the probability of being in state  at time , and 
state  at time 1, given the model and the observation sequence, i.e.,

    

E E

t i

j

i j S t
S t

ξ λ+⎡ ⎤= = =⎣ ⎦1      ( , ) , | ,  t t i t ji j P q S q S O
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The Training ProblemThe Training Problem

ξ λ+⎡ ⎤= = =⎣ ⎦1          ( , ) , | ,  t t i t ji j P q S q S O
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The Training ProblemThe Training Problem
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( | )
( ) ( ) ( ) ( ) ( ) ( )
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=

−

=
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ReRe--estimation Formulasestimation Formulas
π

γ

ξ

γ

−

=

=
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=

=
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=
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ReRe--estimation Formulasestimation Formulas
( ) ( )λ λ

λ

= Π = ΠIf , ,  is the initial model, and , ,  is the 

re-estimated model, then it can be proven that either:
    1. the initial model, , defines a critical point of the likelihood
        function, in wh

A B A B

λ λ
λ λ

λ λ λ

=

>

ich case , or
    2. model  is more likely than model  in the sense that
        ( | ) ( | ), i.e., we have found a new model  from
        which the observation sequence is more likely to have b

P O P O

λ λ

een 
        produced.

: Iteratively use  in place of , and repeat the
       re-estimation until some limiting point is reached.  The resulting
       model is called the maximum likelihood (

Conclusion

ML) HMM.



43

ReRe--estimation Formulasestimation Formulas

λ

λ λ λ

λ λ λ λ

λ λ

⎡ ⎤= ⎣ ⎦

⎡ ⎤ ⇒⎣ ⎦

∑

1. The re-estimation formulas can be derived by maximizing the 
    auxiliary function ( , ) over , i.e.,

           ( , ) ( , | )log ( , |

   It can be proved that:

           max ( , )

q

Q

Q P O q P O q

Q P λ λ

λ λ

≥

i

( | ) ( | )

   Eventually the likelihood function converges to a critical point
2. Relation to EM algorithm:
       E (Expectation) step is the calculation of the auxiliary
         function, ( , )
     

O P O

Q
λi  M (Modification) step is the maximization over 
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Notes on ReNotes on Re--estimationestimation
π

π

λ

π
ππ π

π
π

= = =

=

= = =

=
∂
∂

= =
∂
∂

∂
∂

=

∑ ∑ ∑

∑

1 1 1

i

i

1

1. Stochastic constraints on , , ( ) are automatically met, i.e.,

          1, 1, ( ) 1

2. At the critical points of ( | ),  then

         

i ij j

N N M

i ij j
i j k

i
iN

k
k k

ij

ij

a b k

a b k

P P O
P

P

Pa
a

=

=

=
∂
∂

∂
∂

= =
∂

∂

⇒

∑

∑
A A

1

1

( )
( )

( ) ( )
( )

( )

 at critical points, the re-estimation formulas are  correct.

ij
ijN

ik
k ik

j
j

j jM

j
j

a
a

Pa
a

Pb k
b k

b k b k
Pb l

b

exactly
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Variations on Variations on HMM’sHMM’s

1. Types of HMM—model structures
2. Continuous observation density 

models—mixtures
3. Autoregressive HMM’s—LPC links
4. Null transitions and tied states
5. Inclusion of explicit state duration density 

in HMM’s
6. Optimization criterion—ML, MMI, MDI
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Types of HMMTypes of HMM

π
=⎧

= ⎨ ≠⎩
= >

1. Ergodic models--no transient states
2. Left-right models--all transient states (except the last state)
    with the constraints:

1, 1
          

0, 1
0

   Controlled transitions implies:
   

i

ij

i
i

a j i

= > + Δ Δ =       0, ( 1,2 typically)

3. Mixed forms of ergodic and left-right models (e.g., parallel branches)
:  Constraints of left-right models don't affect re-estimation

           formulas (i.e.,

ija j i

Note
 a parameter initially set to 0 remains at 0 during

           re-estimation).
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Types of HMMTypes of HMM

ErgodicErgodic ModelModel

LeftLeft--Right ModelRight Model

Mixed ModelMixed Model
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Continuous Observation Density Continuous Observation Density HMM’sHMM’s

{ }

μ
=

⎡ ⎤= ≤ ≤⎣ ⎦

=

=
=

∑ `
1

1 2

Most general form of pdf with a valid re-estimation procedure is:

          ( ) , , , 1

observation vector= , ,...,
number of mixture densities

          gain of -th mi

M

j jm jm jm
m

D

jm

b x c x U j N

x x x x
M
c m

μ

=

=
=

=

≥ ≤ ≤ ≤ ≤

= ≤ ≤∑

`

1

xture in state 

any log-concave or elliptically symmetric density (e.g., a Gaussian)
mean vector for mixture , state 

covariance matrix for mixture , state 

0, 1 , 1

1, 1

jm

jm

jm

M

jm
m

j

m j

U m j

c j N m M

c j

∞

−∞

= ≤ ≤∫ ( ) 1, 1j

N

b x dx j N
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State Equivalence ChartState Equivalence Chart
Equivalence of Equivalence of 

state with state with 
mixture density mixture density 

to multito multi--state state 
single mixture single mixture 

casecase

SS SS

SS

SS

SS
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ReRe--estimation for Mixture Densitiesestimation for Mixture Densities

( )( )

γ

γ

γ
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γ

γ μ μ
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=

= =

=

=

=
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⋅
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′⋅ − −
=

∑
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∑
i
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1
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( , )

( , )

( , )

( , )

( , )

( , )

( , ) is the probability of being in state  at time  with the
  -th mixture component acc
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t
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t
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑

`

`
1 1

ounting for 

( , , )( ) ( )( , )
( ) ( ) ( , , )

t

jk t jk jkt t
t N M

t t jm t jm jm
j m

O

c O Uj jj k
j j c O U
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Autoregressive HMMAutoregressive HMM
−=

=

0 1 1Consider an observation vector ( , ,..., ) where each
 is a waveform sample, and  represents a frame of the signal 

(e.g., 256 samples).  We assume  is related to previous 
samples of  by 

K

k

k

O x x x
x O

K x
O

σ

−
=

= − + ≤ ≤ −∑
1

2

a Gaussian autoregressive process of order , i.e.,

          , 0 1

where  are Gaussian, independent, identically distributed random

variables with zero mean and variance ,  and 

p

k i k i k
i

k

p

O a O e k K

e

a

πσ δ
σ

δ

−

=

≤ ≤

→ ∞

⎧ ⎫= −⎨ ⎬
⎩ ⎭

= + ∑

2 / 2
2

1

,1  are the
autoregressive or predictor coefficients.
As ,  then

1           ( ) (2 ) exp ( , )
2

where

( , ) (0) (0) 2 ( ) ( )

i

K

p

a a
i

i p

K

f O O a

O a r r r i r i
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Autoregressive HMMAutoregressive HMM

[ ]

( )α σ

α σ

π

−

+
=

− −

+
=

=

−

= = ≤ ≤

= ≤ ≤

′ ⎡ ⎤= ⎣ ⎦

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

= =

=

∑

∑

∑

0
0

1

0

1 2

2 2

1

2

( ) , ( 1), 1

( ) , 0

1, , ,...,

The prediction residual is:

     

Consider the normalized observation vector

ˆ     

ˆ( ) (2 )

p i

a n n i
n

K i

n n i
n

p

K

i
i

r i a a a i p

r i x x i p

a a a a

E e K

O OO
K

f O δ⎛ ⎞−⎜ ⎟
⎝ ⎠

=

/ 2 ˆexp ( , )
2

ˆIn practice,  is replaced by , the effective frame length, e.g.,
ˆ / 3 for frame overlap of 3 to 1.

K K O a

K K

K K
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Application of Autoregressive HMMApplication of Autoregressive HMM

π δ

=

−

=

⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑
1

/ 2

(0) ( )

( ) (2 ) exp ( , )
2

Each mixture characterized by predictor vector or by
autocorrelation vector from which predictor vector can
be derived.  Re-estimation formulas for

M

j jm jm
m

K
jm jm

b c b O

Kb O O a
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= =
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⎢ ⎥ ⎢ ⎥
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( , )
          

( , )

( )( ) ( )( , )
( ) ( ) ( )
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jk T

t
t

jk jk tt t
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t t jk jk t
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j k r
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Null Transitions and Tied StatesNull Transitions and Tied States

Null Transitions:  transitions which produce no 
output, and take no time, denoted by φ

Tied States: sets up an equivalence relation 
between HMM parameters in different states
– number of independent parameters of the model 

reduced
– parameter estimation becomes simpler
– useful in cases where there is insufficient training 

data for reliable estimation of all model parameters
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Null TransitionsNull Transitions
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Inclusion of Explicit State Duration DensityInclusion of Explicit State Duration Density

−

=

= −1

For standard HMM's, the duration density is:
( ) probability of exactly  observations in state 

( ) (1 )
With arbitrary state duration density, ( ),  observations are 
generated as follows:
 

i i
d

ii ii

i

p d d S

a a
p d

π
=

1

1

1

1

1

1 2

 1. an initial state, ,  is chosen according to the initial state
      distribution, 
  2. a duration  is chosen according to the state duration density
      ( )

  3. observations ...

i

i

q

d

q S

d
p d

O O O

=

=

=

∏

1 1

1

1 1 1

1 2

1 2
1

2

are chosen according to the joint density

      ( ... ).  Generally we assume independence, so

                    ( ... ) ( )

  4. the next state, , is chosen according t

q d

d

q d q t
t

j

b O O O

b O O O b O

q S

=
1 2 1 1

o the state transition

      probabilities, ,  with the constraint that 0, i.e., no transition

      back to the same state can occur.
q q q qa a
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Explicit State Duration DensityExplicit State Duration Density

Standard HMMStandard HMM

HMM with explicit state duration densityHMM with explicit state duration density
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Explicit State Duration DensityExplicit State Duration Density

+ + + + + +

+ + +

=

=

⇒

1 1 1 2 1 2 1 2 3

1 1 2

1 2 3

1 2 3

1 1 1

1

1 1 1

state

duration

observations ... ... ...

Assume:
  1. first state, ,   at 1
  2. last state, ,   at 

entire duration intervals are inc

d d d d d d d d d
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O O O O O O
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α λ=

= =

=

1 2
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    sequence ...
Modified :

          ( ) ( ... ,  ending at | )
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           ... with 

...   wit
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r r i
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O O O

i P O O O S t
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Q q q q q S
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Explicit State Duration DensityExplicit State Duration Density

α π

α α

− −

+ +

+ + + +

−
= = − +
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⋅

⋅
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∏

1 1 1

1 2 2 1 1 2

1 1 2 1

1 1 2 1

2 1 2

... 1

1 1

Then we have
           ( ) ( ) ( ... | )

( ) ( ... | )...

( ) ( ... | )

By induction:

          ( ) ( ) ( ) ( )
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t q q d
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q q q d d d
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1,1
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Initialization of ( ) :
( ) (1) ( )

( ) (2) ( ) ( ) (1) ( )

( ) (3) ( ) ( ) ( ) ( )
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N D

i
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i i i

N
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Explicit State Duration DensityExplicit State Duration Density

δ = =

i

i

1 2 1 2

 re-estimation formulas for , ( ), and ( ) can be formulated

  and appropriately interpreted
 modifications to Viterbi scoring required, i.e.,

           ( ) ( ... , ...  ending at 

ij i i

t t r i

a b k p d

i P O O O q q q S t

δ δ

δ δ
δ

−≤ ≤ ≠ ≤ ≤
= − +

− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⇒ ⋅

∏

i
i

1 , 1 1

1

| )

( ) max max ( ) ( ) ( )

 storage required for ...  locations
 maximization involves all terms--not just old 's and  as in

  prev

t

t t d ji i j sj N j i d D s t d

t t D

ji

O

i j a p d b O

N D
a

Basic Recursion :

⇒

≈

= =

2 2

ious case  significantly larger computational load
  ( / 2)  computations involving ( )

Example:  5, 20

implicit duration explicit duration
storage 5 100

computation 2500 500,000

jD N T b O

N D
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Issues with Explicit State Duration Issues with Explicit State Duration 
DensityDensity

1. quality of signal modeling is often improved significantly
2. significant increase in the number of parameters per state
    (  duration estimates)
3. significant increase in the computation associate

D

2

2

d with probability
    calculation ( / 2)
4. insufficient data to give good ( ) estimates

1. use parametric state duration density
           ( ) ( , , ) -- Gaussian

           ( )

i

i i i

i
i

D
p d

p d d

p d

μ σ

η

≈

=

=

`

Alternatives :

1

-- Gamma
( )

2. incorporate state duration information after probability
    calculation, e.g., in a post-processor

i i i d

i

d eν ν η

ν

− −

Γ
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Alternatives to ML EstimationAlternatives to ML Estimation
λ λ λ

λ

∗ =

1 2Assume we wish to design  different HMM's, , ,..., .
Normally we design each HMM, ,  based on a training set of

observations, ,  using a maximum likelihood (ML) criterion, i.e.,

           max

V

V
V

V

V

O

P

( )

λ
λ

λ λ λ λ

λ λ

λ
=

⎡ ⎤⎣ ⎦

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

∑

1 2

1

|

Consider the , ,  between the observation

sequence, ,  and the  set of models , ,..., ,

log ( | ) log ( | )

Consider maximizing  over , 

V

V
V

V
V

V

V
V V

V V W
w

V

P O

I

O

I P O P O

I

mutual information
complete

λ
λ λ

λ λ

∗

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑

i
1

giving

           max log ( | ) log ( | )

 choose  so as to separate the correct model, ,  from all

  other models, as much as possible, for the training set, .

V
V V

V V W
w

V
V

I P O P O

O
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Alternatives to ML EstimationAlternatives to ML Estimation

( )
λ

λ λ∗

= =

⎧ ⎫⎡ ⎤
= −⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∑ ∑

i
1 1

Sum over all such training sets to give models according to an MMI
criterion, i.e.,

           max log ( | log ( | )

 solution via steepest descent methods.

V V
v v

v w
v w

I P O P O
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Comparison of Comparison of HMM’sHMM’s
λ λ1 2:  given two HMM's,  and ,  is it possible to give a

                measure of how similar the two models are
Problem

Example :

( ) ( ) ν

ν

⇔ =

+ − − = + − −
− − = = =
+ − −

=
−

= =

1 1 2 2For , ,  we require ( ) to be the same
for both models and for all symbols .  Thus we require
           (1 )(1 ) (1 )(1 )

2 2
1 2
1 2

Let 0.6, 0.7,

equivalent

t k

k

A B A B P O

pq p q rs r s
pq p q rs r s

p pq rs
r

p q r =
= �

0.2, then
13 / 30 0.433s
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Comparison of Comparison of HMM’sHMM’s
Thus the two models have very different and  matrices, but are
equivalent in the sense that all symbol probabilities (averaged over
time) are the same.
We generalize the concept of model distance (dis

A B

λ λ
λ λ

λ λ λ λ⎡ ⎤= −⎣ ⎦

1 2

1 2

(2) (2)
1 2 1 2

(2)

-similarity) by
defining a distance measure, ( , ) between two Markov sources,

 and ,  as

1           ( , ) log ( | ) log ( | )

where  is a sequence of observations generated 

T T

T

D

D P O P O
T

O

[ ]

λ

λ λ λ λ λ λ= +

2

1 2 1 2 2 1

by model ,
and scored by  models.
We symmetrize  by using the relation:

1           ( , ) ( , ) ( , )
2S

D

D D D

both
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Implementation Issues for Implementation Issues for HMM’sHMM’s

1. Scaling—to prevent underflow 
and/or overflow.

2. Multiple Observation Sequences—to 
train left-right models.

3. Initial Estimates of HMM 
Parameters—to provide robust 
models.

4. Effects of Insufficient Training Data
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ScalingScaling
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( ) is a sum of a large number of terms, each of the form:

          ( )
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   underflow.
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ScalingScaling
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ScalingScaling
β

α

β β
α β

=
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  for scaling the ( ) terms we use the  scale factors as for
   the ( ) terms, i.e.,

ˆ                     ( ) ( )
   since the magnitudes of the  and  terms are comparable.
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   and 's is:
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ScalingScaling
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Multiple Observation SequencesMultiple Observation Sequences

⎡ ⎤= ⎣ ⎦
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1 2

For left-right models, we need to use multiple sequences of observations for training.  
Assume a set of  observation sequences (i.e., training utterances):
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Initial Estimates of HMM Initial Estimates of HMM 
ParametersParameters

π π

ε

≠

≠

≥

 -- choose based on physical considerations
 -- choose based on model fits
 -- random or uniform ( 0)
 -- random or uniform ( 0)

( ) -- random or uniform ( ( ) )

( ) -- need good initial 

i i

ij ij

j j

j

N
M

a a

b k b k

b O estimates of mean vectors; 

             need reasonable estimates of covariance matrices
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Effects of Insufficient Training Effects of Insufficient Training 
DataData

Insufficient training data leads to poor estimates of model parameters.
Possible Solutions:
  1. use more training data--often this is impractical
  2. reduce the size of the model--often there are physi

ε

δ

≥

≥

⋅

cal reasons for
      keeping a chosen model size
  3. add extra constraints to model parameters
                       ( )

( , )

       often the model performance is relatively insensitive to e

j

jk

b k

U r r

ε δ

λ ελ ε λ′

xact choice
      of ,
  4. method of deleted interpolation
                       = +(1- )
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Methods for Insufficient DataMethods for Insufficient Data

Performance insensitivity to Performance insensitivity to εε
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Deleted InterpolationDeleted Interpolation
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Isolated Word Recognition Using Isolated Word Recognition Using 
HMM’sHMM’s

Assume a vocabulary of  words, with  occurrences of each spoken word
in a training set.  Observation vectors are spectral characterizations of the word.
For isolated word recognition, we do the follow

V K

( )
λ

Π

ing:
  1. for each word, , in the vocabulary, we must build an HMM, , i.e., we 
      must re-estimate model parameters , ,  that optimize the likelihood of the 
      training set observation vector

vv
A B

[ ]= 1 2

s for the -th word. (TRAINING)
  2. for each unknown word which is to be recognized, we do the following:
          a. measure the observation sequence ...

          b. calculate model likelihoo
T

v

O O O O

λ

λ∗

≤ ≤

≤ ≤

⎡ ⎤= ⎣ ⎦

⋅ = = =

⇒

1
2

5

ds, ( | ), 1
          c. select the word whose model likelihood score is highest

                     argmax ( | )

Computation is on the order of  required; 100, 5, 40
10  com

v

v

v V

P O v V

v P O

V N T V N T
putations
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Isolated Word HMM Recognizer
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Choice of Model Parameters
1. Left-right model preferable to ergodic model (speech is a left-right 

process)
2. Number of states in range 2-40 (from sounds to frames)

• Order of number of distinct sounds in the word
• Order of average number of observations in word

3. Observation vectors
• Cepstral coefficients (and their second and third order derivatives) 

derived from LPC (1-9 mixtures), diagonal covariance matrices
• Vector quantized discrete symbols (16-256 codebook sizes)

4. Constraints on bj(O) densities
• bj(k)>ε for discrete densities
• Cjm>δ, Ujm(r,r)>δ for continuous densities
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Performance Vs Number of Performance Vs Number of 
States in ModelStates in Model
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HMM Feature Vector DensitiesHMM Feature Vector Densities
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Segmental KSegmental K--Means Means 
Segmentation into StatesSegmentation into States

Motivation:
derive good estimates of the bj(O) densities as required for rapid 
convergence of re-estimation procedure.

Initially:
training set of multiple sequences of observations,  initial model estimate.

Procedure:
segment each observation sequence into states using a Viterbi procedure.  
For discrete observation densities, code all observations in state j using 
the M-codeword codebook, giving

bj(k) = number of vectors with codebook index k, in state j, divided by the 
number of vectors in state j.

for continuous observation densities, cluster the observations in state j into 
a set of M clusters, giving
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Segmental KSegmental K--Means Means 
Segmentation into StatesSegmentation into States

cjm = number of vectors assigned to cluster m of state j divided 
by the number of vectors in state j.

μjm = sample mean of the vectors assigned to cluster m of state 
j

Ujm = sample covariance of the vectors assigned to cluster m of 
state j

use as the estimate of the state transition probabilities
aii = number of vectors in state i minus the number of 

observation sequences for the training word divided by the 
number of vectors in state i.

ai,i+1 = 1 – aii

the segmenting HMM is updated and the procedure is 
iterated until a converged model is obtained.
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Segmental KSegmental K--Means TrainingMeans Training
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HMM Segmentation for /SIX/HMM Segmentation for /SIX/
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Digit Recognition Using Digit Recognition Using HMM’sHMM’s

unknown unknown 
log log 

energyenergy

frame frame 
likelihood likelihood 

scoresscores

frame frame 
cumulative cumulative 

scoresscores

state state 
segmentationsegmentation

oneone

oneone

oneone

ninenine

oneone

oneone

ninenine

ninenine
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Digit Recognition Using Digit Recognition Using HMM’sHMM’s

unknown unknown 
log energylog energy

frame frame 
likelihood likelihood 

scoresscores

frame frame 
cumulative cumulative 

scoresscores

state state 
segmentationsegmentation

sevenseven

sevenseven

sevenseven

sevenseven

sevenseven

sixsix

sixsix

sixsix
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