Digital Speech Processing—
Lecture 20

The Hidden Markov
Model (HMM)
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Theory of Markov Models
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— hidden Markov processes
Solutions to the Three Basic Problems of HMM's
— computation of observation probability
— determination of optimal state sequence
— optimal training of model
Variations of elements of the HMM
— model types
— densities
Implementation Issues
— scaling
— multiple observation sequences
— initial parameter estimates
— insufficient training data

Implementation of Isolated Word Recognizer Using HMM's



Stochastic Signal Modeling

« Reasons for Interest:

— basis for theoretical description of signal
processing algorithms

— can learn about signal source properties

— models work well in practice in real world
applications

* Types of Signal Models
— deteministic, parametric models
— stochastic models



Discrete Markov Processes

System of N distinct states, {S,,S,,...,S,}
ar) 822

Time(t)| 1 2 3 4 5
State |9, 9, 9, q, q ..
Markov Property:

'D|:qt = S,' |qt_1 = Sj’qt—Z — Sk""] :P[qt :Si |qt—1 = j]




Properties of State Transition Coefficients

Consider processes where state transitions are
time independent, i.e.,

a; :P|:qt :Si |q1r—1 :Sj], 1<i,jJ<N




Example of Discrete Markov
Process

Once each day (e.g., at noon), the weather is observed
and classified as being one of the following:

— State 1—Rain (or Snow; e.g. precipitation)

— State 2—Cloudy

— State 3—Sunny

with state transition probabilities:

04 03 0.3
A=la;l=/02 06 0.2
0.1 0.1 0.8




Discrete Markov Process

Problem: Given that the weather on day 1 is sunny, what
is the probability (according to the model) that the
weather for the next 7 days will be “sunny-sunny-rain-
rain-sunny-cloudy-sunny”?

Solution: We define the observation sequence, O, as:

0=1S,,5,.S,.S,,S,,S,.,S,.S, |
and we want to calculate P(O|Model). That is:

P(O|Model) = P[S,,S,,S,,S,,S,,S;,5,,S, | Model]



Discrete Markov Process

P(O|Model)=P[S,,S,,S,.S,,S,,S,,S,,S, | Model]
= P[S,]P[S,|S,] P[S,1S,]P[S,1S/]
P[S,1S,]P[S,1S,]P[S, | S,]
= 77, (85) 8318118138558,
=1(0.8)"(0.1)(0.4)(0.3)(0.1)(0.2)
=1.536-10"%
7, =P|q,=S;], 1<i<N

/




Discrete Markov Process

Problem: Given that the model is in a known
state, what is the probability it stays in that state
for exactly d days?

Solution:

0={S,S.S,....S,, S; # S, |
123 d d+1

P(O|Model, q,=S;)

d,=> dp,(d)=
d=1

(aii )d_1 (1 — a,; ) — pi(d)
1
1-a,

1




Exercise

Given a single fair coin, i.e., P (H=Heads)=

P (T=Tails) = 0.5, which you toss once and observe
Talls:

a) what is the probability that the next 10 tosses will
provide the sequence {(HHTHTTHTT H}?

SOLUTION:

For a fair coin, with independent coin tosses, the probability of
any specific observation sequence of length 10 (10 tosses) is
(1/2)'° since there are 2'° such sequences and all are equally
probable. Thus:

PHHTHTTHTTH)=(1/2)"

10



Exercise

b) what is the probability that the next 10
tosses will produce the sequence {H H
HHHHHHHH}?

SOLUTION:

Similarly:
PHHHHHHHHHH)=(1/2)10

Thus a specified run of length 10 is equally as likely as

a specified run of interlaced H and T.
11



Exercise

c) what is the probability that 5 of the next 10 tosses will
be tails? What is the expected number of tails over
the next 10 tosses?

SOLUTION:

The probability of 5 tails in the next 10 tosses is just the number of observation
sequences with 5 tails and 5 heads (in any sequence) and this is:

P (5H, 5T)=(10C5) (1/2)10 = 252/1024=0.25
since there are (10C5) combinations (ways of getting 5H and 5T) for 10 coin
tosses, and each sequence has probability of (1/2)1° . The expected number of
tails in 10 tosses is:

d )\ 2

Thus, on average, there will be 5H and 5T in 10 tosses, but the probability
of exactly 5H and 5T is only about 0.25. 12

10 (10)/ 1)"
E(Number of T in 10 coin tosses) = Zd( j(j =5
d=0



Coin Toss Models

A series of coin tossing experiments is performed. The
number of coins is unknown; only the results of each coin
toss are revealed. Thus a typical observation sequence is:

0=00,0,..0, = HHTTTHTTH..H

Problem: Build an HMM to explain the observation sequence.

Issues:
1. What are the states in the model?
2. How many states should be used?

3. What are the state transition probabilities?

13



Coin Toss Models

P(H) 1—P(H)
1-P(H)
(a)

1 P(H)
HEADS TAILS

Qy4 d22

=04y
(b)
1 2

1-Q22

P(H) = P, P(H) =P,
P(T)=1-P, P(T)=1-P,

1- COIN MODEL
(OBSERVABLE
MARKOV MODEL)

O=HHTTHTHHTTH...
S=11221211221...

2-COINS MODEL
(HIDDEN MARKOV MODEL)

O=HHTTHTHHTTH...
S=21122212212...

14



Coin Toss Models

3-COINS MODEL
(HIDDEN MARKOV MODEL)

P(H P, P, Pg

O=HHTTHTHHTTH...
S=31233112313...

15



Coin Toss Models

Problem: Consider an HMM representation (model A) of a coin
tossing experiment. Assume a 3-state model (corresponding to 3
different coins) with probabilities:

State 1 |State 2 |State 3
P(H) 0.5 0.75 0.25
P(T) 0.5 0.25 0.75

and with all state transition probabilities equal to 1/3. (Assume initial state
probabilities of 1/3).

a) You observe the sequence: O=HHHHTHTTTT

What state sequence is most likely? What is the probability of the
observation sequence and this most likely state sequence?

16



Coin Toss Problem Solution

SOLUTION:

Given O=HHHHTHTTTT, the most likely state
sequence is the one for which the probability of
each individual observation is maximum. Thus for
each H, the most likely state is S, and for each T
the most likely state is S;. Thus the most likely
state sequence is:

s=5s,S,S,S,S,5,5,S,S, S,
The probability of O and S (given the model) is:

P(0,S| ) =(0.75)" (%j

17



Coin Toss Models

b) What is the probability that the observation sequence came entirely
from state 1?

SOLUTION:

The probability of O given that S is of the form:

~

S$=S5.S,S:SS:SS.S,S,
IS:
R 1 10
P(O,S| 1) =(0.50)" (gj
The ratio of P(O,S| 1) to P(O,S| 1) is:

10
R:P(O’§M)=(§j ~57.67
P(0,$)11) |2




Coin Toss Models

c) Consider the observation sequence:

O=HTTHTHHTTH

How would your answers to parts a and b change?

SOLUTION:

Given O which has the same number of H's and T's, the answers to
parts a and b would remain the same as the most likely states occur
the same number of times in both cases.

19



Coin Toss Models

d) If the state transition probabilities were of the form:
a,=09 a,=045 a,, =045
a,=005 a,=01 a,=045
a,; =0.05 a,,=045 a,,=0.1

l.e., a new model A, how would your answers to parts a-c

change? What does this suggest about the type of sequences
generated by the models?

20



Coin Toss Problem Solution

SOLUTION:
The new probability of O and S becomes:

P(O,S| A')=(0.75)" (%j(m)ﬁ (0.45)
The new probability of O and S becomes:

P(O,S| A') = (0.50)" (%j(og)g
The ratio is:

SR

21



Coin Toss Problem Solution

Now the probability of O and S is not the same as the probability of O
and S. We now have:

P(O,S| 1) =(0.75)"| = |(0.45)(0.1)°

P(O,S|4')=(0.50)"°| = |(0.9)°

with the ratio;

R = (ﬁjm (1T (17 =1.24.107°
2 2)\9
Model A, the initial model, clearly favors long runs of H's or T's,
whereas model 1A', the new model, clearly favors random sequences
of H'sand T's. Thus evenarunof H's or T's is more likely to

occur in state 1 for model A', and a random sequence of H'sand T's

is more likely to occur in states 2 and 3 for model A. -



Balls in Urns Model

P(RED) = by(1)
P(BLUE) =Db4(2)
P(GREEN) = b,(3)
P(YELLOW) = b,(4)

P(ORANGE) = by (M)

0= {GREEN, GREEN, BLUE, RED, YELLOW, RED,

URN 2
P(RED) = Dba(1)
P(BLUE) = by(2)

P(GREEN) = b2(3)
P(YELLOW) = b2(4)

P(ORANGE) = by(M)

URN N
P(RED) = bn(1)
P(BLUE) = by(2)

P(GREEN) = by(3)
P(YELLOW) = by(4)

P(ORANGE) = by(M)

23



Elements of an HMM

1. N, number of states in the model
-states, S=1{S,,S,,....Sy |
-state attime t,q, €S
2. M, number of distinct observation symbols per state
- observation symbols, V ={v,,v,,...,v,,}
- Observation at time t, O, eV
3. State transition probability distribution, A = {aij},
a; =P(q,,=5;19,=S;), 1<i,j<N
4. Observation symbol probability distribution in state j
B= {bf(k )}
b;(k)=P|v, att|g,=S;|, 1<j<N, 1<k<M
5. Initial state distribution, IT = {7, }
7, =P[q, =S|, 1<i<N

24



HMM Generator of Observations

1. Choose an initial state, q, = S,, according to the initial state
distribution, II.

2.Sett=1.

3. Choose O, =v, according to the symbol probability distribution
in state S;, namely b, (k).

4. Transit to a new state, g,,, = S; according to the state transition
probability distribution for state S;, namely a;.

5. Sett=t+1; return to step 3 if t < T; otherwise terminate the procedure.

t 112131456 ]...] T
state | Q4 |02|93]94| 95 |96 | --- | O
observation 01 02 03 04 05 06 OT

Notation: A=(A,B,II1)--HMM 25



Three Basic HMM Problems

Problem 1--Given the observation sequence, O =0,0,...0,, and a model
A=(A,B,I1), how do we (efficiently) compute P(O| 1), the probability of the
observation sequence?

Problem 2--Given the observation sequence, O =0,0,...0,, how do we
choose a state sequence Q =q.,q,...q; Which is optimal in some meaningful
sense?

Problem 3--How do we adjust the model parameters /1=(A, B,H) to maximize
P(O|4)?

Interpretation:

Problem 1--Evaluation or scoring problem.
Problem 2--Learn structure problem.
Problem 3--Training problem.

26



Solution to Problem 1—P(O]A)

Consider the fixed state sequence (there are N’ such sequences):
Q=q9,9,...9;
Then
P(O|Q,4)=b, (C,)-b, (O,)...b, (O;)
P(Q|A)=7, a,, 8, -8 4
and
P(O,Q|A4)=P(O|Q,1)-P(Q]|A)
Finally

P(O|2)= > P(0,Q|4)

all Q

P(O | ﬂ’) - Z 7[% bQ1 (O1 )aChCIz bCIz (02 ) . aCITACIT qu (OT )

41,9297

Calculations required ~ 2T -N"; N=5,T =100=2-100-5""
~10"* computations!




The “Forward” Procedure

Consider the forward variable, «,(i), defined as the probability of the
partial observation sequence (until time t) and state S, at time ¢, given
the model, i.e.,

a,(i)=P(0,0,..0,q, =S,|2)

Inductively solve for «,(i) as:

1. Initialization

a,(i)=7rb,(0,), 1<i<N
2. Induction

a, (f)= {Zat(l)alj} (O,,,), 1<t<T-1i<j<N
3. Termination

N
P(O| 1) ZPOO 01,q; =S,12) =Y o, (i)
i=1

Computation: N*T versus 2TN'; N =5,T =100 = 2500 versus 10 .



The “Forward” Procedure

(b)

LV Y

OBSERVATION, t

29



The “Backward” Algorithm

Consider the backward variable, g.(/), defined as the probability of
the partial observation sequence from t +1 to the end, given state
S, at time t, and the model, i.e.,

p.(i)=P(0,,0,,..0:1q, =S,,1)

Inductive Solution:

1. Initialization
L-()=1 1<i<N
2. Induction

t t + 1

Byli) By +4(0)

N
B(i)=>a,b,(0,,)B.a(j), t=T -1T-2,.,,1<i<N
j=1

. N°T calculations, same as in forward case ”



Solution to Problem 2—Optimal
State Sequence

1. Choose states, q,, which are individually most likely =
maximize expected number of correct individual states

2. Choose states, q,, which are pair - wise most likely =
maximize expected number of correct state pairs

3. Choose states, q,, which are triple - wise most likely =
maximize expected number of correct state triples

4. Choose states, q,, which are T -wise most likely =
find the single best state sequence which maximizes P(Q,0O| A1)

This solution is often called the Viterbi state sequence because
it is found using the Viterbi algorithm.

31



Maximize Individual States

We define y,(/) as the probability of being in state S, at time £,
given the observation sequence, and the model, i.e.,

A _ _P(Qt:SiaOM)
7/t(’)—P(Qt _Silo’ﬁ‘)_ P(O|)
then
o\ P(qt:SiaOM“) _O[t(i)ﬁt(i)_ Olt(l)ﬂt(l)
Vt(’)— N = P(O[1) =
Zp(qt =S, 04) Zat(i)ﬂt(i)
with
i?/t(i):1, Vt
then _

q; =argmax|y,(i)], 1<t<T

1<i<N

Problem: g, need not obey state transition constraints.

32



Best State Sequence—The
Viterbi Algorithm

Define 6,(/) as the highest probability along a single path,
at time t, which accounts for the first t observations, i.e.,

5,(i) = max P[q1q2 G 1G9, =i, 0,0,..0,|1]

41,92

We must keep track of the state sequence which gave the
best path, at time {, to state /. We do this in the array vy, (/).

33



The Viterbi Algorithm

Step 1--Initialization
o,(i)=rb,(0,), 1<i<N
v, () =0, 1<i<N
Step 2 --Recursion
5,(j)=max|5,(i)a; |b,(0;), 2<t<T,1<j<N

1<i<N

w,(j)=argmax| 5, ,(i)a; |,  2<t<T,1<j<N

1<i<N
Step 3 --Termination

P* =max|&; (i)]

1<i<N

q; =argmax|J;(i)]

1<i<N

Step 4 - -Path (State Sequence) Backtracking
q:: l//t+1(q:+1)a t=T-1T7T-2,...,1

Calculation ~ N*T operations (*,+)

34



Alternative Viterbi Implementation

~izlog(ﬂ-,') 1SISN
b,(0,)=log| b,(0,)] 1<i<N1<t<T
a, =log| a | 1<i,j<N

Step 1--Initialization
5,(i)=log(s,(i)) = 7 +b,(0;), 1<i<N
w,(i)=0, 1<i<N
Step 2 - -Recursion
5,(j) =log(s,()y=max| 5, (i) + &, |+ b;(0,), 2<t<T,1<j<N

1<i<N

wi(j)=argmax| 5, (i) +&, |, 2<t<T,1<j<N

1<i<N
Step 3 --Termination

~

P = max[ST(i)], 1<i<N

1<i<N

q; =argmax| J.(i)|, 1<i<N
T T

1<i<N

Step 4 - -Backtracking

q; =v.q(G4), t=T-1T-2,...,1
Calculation ~ N°T additions



Problem

Given the model of the coin toss experiment used earlier (i.e., 3
different coins) with probabilities:

State 1 |State 2 | State 3
P(H) 0.5 0.75 0.25
P(T) 0.5 0.25 0.75

with all state transition probabilities equal to 1/3, and with initial
state probabilities equal to 1/3. For the observation sequence O=H
HHHTHTTTT, find the Viterbi path of maximum likelihood.



Problem Solution

Since all a; terms are equal to 1/3, we can omit these terms (as well as
the initial state probability term) giving:

0,(1)=0.5, 5,(2)=0.75, 5,(3)=0.25
The recursion for &,(j) gives (2<t<10)

5,(1)=(0.75)(0.5),  &,(2)=(0.75) 5,(3) = (0.75)(0.25)
5,(1)=(0.75%2(0.5), 5,(2)=(0.75)", 5,(3) = (0.75)%(0.25)
5,(1)=(0.757(0.5), 4,(2)=(0.75)", 5,(3)=(0.75)°(0.25)
5,(1)=(0.75)(0.5), &,(2)=(0.75)*(0.25), &,(3)=(0.75)°
5,(1)=(0.75)°(0.5), §5,(2)=(0.75)°, 5,(3) = (0.75)°(0.25)

5,(1)=(0.75)°(0.5), &,(2)=(0.75)°(0.25), &5,(3)=(0.75)
5,(1)=(0.75)'(0.5), 5,(2)=(0.75)'(0.25), &,(3)=(0.75)°
5,(1)=(0.75)(0.5), 5,(2)=(0.75)%(0.25), &,(3)=(0.75)°
5,,(1)=(0.75)°(0.5), ,,(2)=(0.75)°(0.25), &,,(3)=(0.75)"
This leads to a diagram (trellis) of the form:

] ST

2 3 4 5 6 7 8 9 10

37
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Solution to Problem 3—the Training Problem

* no globally optimum solution is known

» all solutions yield local optima
— can get solution via gradient techniques
— can use a re-estimation procedure such as the Baum-Welch or
EM method
« consider re-estimation procedures

— basic idea: given a current model estimate, A, compute
expected values of model events, then refine the model based
on the computed values

/1(0) E[Model Events] /1(1) E[Model Events] /1(2) o

Define &,(/, j), the probability of being in state S, at time ¢, and
state S; at time £ +1, given the model and the observation sequence, i.e.,

&3,))=P| 9, =S, 9., =S5,10,2]

38



The Training Problem

£(i,j)=P|q, =S,

t+2



The Training Problem

£, J)=P| G, =S, Gy =S;10,4 |

P|g, =S, q.,=S;,0]4]

&(i,j)=— P(O| 1)
_ at(i)aij bj(ot+1 ) B..1(J) _ at(i)aij bj(ot+1 ) B.1(J)
POI2) >3 a()a, b,(0,,) ()
n(i)=3 &)

T-1
Z;/t(i) = Expected number of transitions from S,
t=1
—1
& (1, j) = Expected number of transitions from S, to Sj

~

t:

—

40



Re-estimation Formulas

7. = Expected number of times in state S; at { =1

=7,(1)
_  Expected number of transitions from state S, to state S,
['j =

Expected number of transitions from state S,
T-1

pRAI)

t=1

Z%‘(i)

t=1

— . Expected number of times in state j with symbol v,
Expected number of times in state j

Z?ﬁ(j)

30, =v,

;7@(/’) 41



Re-estimation Formulas

If = (A,B,IT) is the initial model, and 1 =(A,B,11) is the
re-estimated model, then it can be proven that either:
1. the initial model, A, defines a critical point of the likelihood
function, in which case 1 = A, or
2. model A is more likely than model 1 in the sense that
P(O|1)> P(O] 1), i.e., we have found a new model A from
which the observation sequence is more likely to have been
produced.
Conclusion: Iteratively use 1 in place of 4, and repeat the
re-estimation until some limiting point is reached. The resulting
model is called the maximum likelihood (ML) HMM.

42



Re-estimation Formulas

1. The re-estimation formulas can be derived by maximizing the
auxiliary function Q(1,1) over 4, i.e.,

Q(4,4) = P(0,q|2)log| P(O,q| 1 |

It can be proved that:
m9x[Q(z,Z)] — P(O| 1) = P(O|4)

Eventually the likelihood function converges to a critical point
2. Relation to EM algorithm:
« E (Expectation) step is the calculation of the auxiliary
function, Q(4,1)
- M (Modification) step is the maximization over 1

43



Notes on Re-estimation

1. Stochastic constraints on z;,a;,b;(k) are automatically met, i.e.,

ik
N N

>r=1 >a=1 Yh0="

i=1 j=1

2. At the critical points of P = P(O| 1), then

oP
T ——
or, _
T, = — P =T
7 =
kzz; k@ﬂk
oP
! Oa, _
a,.j = ia @ =aU
= oa,
oP
b(k)——
i )8bj(k) _
b,(k)=— P =b,
b,
= b, (1)

= at critical points, the re-estimation formulas are exactly correct.



Variations on HMM’s

. Types of HMM—model structures

. Continuous observation density
models—mixtures

. Autoregressive HMM's—LPC links

. Null transitions and tied states

. Inclusion of explicit state duration density
in HMM's
. Optimization criterion—ML, MMI, MDI

45



Types of HMM

1. Ergodic models--no transient states
2. Left-right models--all transient states (except the last state)
with the constraints:

1, i=1
. =
"0, i~ 1
a; =0 Jj>i
Controlled transitions implies:
a; =0, j>i+A(A=12 typically)
3. Mixed forms of ergodic and left-right models (e.g., parallel branches)
Note: Constraints of left-right models don't affect re-estimation

formulas (i.e., a parameter initially set to 0 remains at 0 during
re-estimation).

46



Types of HMM

2

< Ergodic Model

3

w (b) Left'Right MOdel

VA Mixed Model

47



Continuous Observation Density HMM’s

Most general form of pdf with a valid re-estimation procedure is:

M
b;(x)=Y ¢, N| X, .U, |, 1<j<N
m=1

X = observation vector={x, X,,..., X, |

M = number of mixture densities

C,, = gain of m-th mixture in state j

N = any log-concave or elliptically symmetric density (e.g., a Gaussian)
M, =mean vector for mixture m, state j

U in = covariance matrix for mixture m, state j
c_>0  1<j<N, 1<m<M

Jm =
M

2_1ij:1’ 1<j<N

o0

jb.(x)dx=1, 1<j<N

J
48



State Equivalence Chart

Equivalence of
state with
mixture density
to multi-state
single mixture

case

49



Re-estimation for Mixture Densities

r '

Zyt(.hk)

- 7,(J,k) is the probability of being in state j at time t with the
k-th mixture component accounting for O,

at(])ﬂt(./) CjkN(otuujk,Ujk)
> (DB || 2 mNOp tyn,Upp)

m=1

7/ (J,k)=

50



Autoregressive HMM

Consider an observation vector O =(x,, X,,..., X,_,) Where each

x, is a waveform sample, and O represents a frame of the signal
(e.g., K =256 samples). We assume x, is related to previous
samples of O by a Gaussian autoregressive process of order p, i.e.,

p
O,=->3a0,,+e, 0<k<K-1
i=1

where e, are Gaussian, independent, identically distributed random

variables with zero mean and variance o, and a,1<i < p are the
autoregressive or predictor coefficients.
As K — oo, then

f(O) = (270? )‘K’zexp{— 21 5 5(0,3)}
(o2

where

i=1 51



Autoregressive HMM

p—i
ro(i)= Zananw (@, =1), 1<i<p
n=0

K—i—1

r(i)="> x,x,., 0<i<p
n=0

The prediction residual is:
K
a= E{Z(e,)z} = Ko*
i=1
Consider the normalized observation vector

In practice, K is replaced by R, the effective frame length, e.g.,

K = K /3 for frame overlap of 3 to 1.

52



Application of Autoregressive HMM

b,(0)= 3¢,,b,,(0)

K

-K/2

b,,(0)=(2r) exp{—Eb“(O,ajm }

Each mixture characterized by predictor vector or by
autocorrelation vector from which predictor vector can
be derived. Re-estimation formulas for r, are:

r t=1

ro=+t%
Z?ﬁ(j’k)
(U K)= % (J)B\) Cib;(O;)
Zat(l)ﬂt(l) chkbjk(ot)




Null Transitions and Tied States

Null Transitions: transitions which produce no
output, and take no time, denoted by ¢

Tied States: sets up an equivalence relation
between HMM parameters in different states

— number of independent parameters of the model
reduced

— parameter estimation becomes simpler

— useful in cases where there is insufficient training
data for reliable estimation of all model parameters

54



Null Transitions

‘)TQ_»Q?QQ_Q —8—»@;» (a)
S AR s
¢ ¢ ¢ ¢
h

t iitwo!!

(b)

’
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Inclusion of Explicit State Duration Density

For standard HMM's, the duration density is:
p;(d) = probability of exactly d observations in state S,
- (aii )d_1(1 - aii)
With arbitrary state duration density, p.(d), observations are
generated as follows:
1. an initial state, g, =S,, is chosen according to the initial state
distribution, =
2. a duration d, is chosen according to the state duration density
p, (d;)
3. observations O,0,...0, are chosen according to the joint density

b, (0,0,...0, ). Generally we assume independence, so
b, (0,0,...0,) Hb (O,)

4. the next state, q, = Sj, IS chosen according to the state transition

probabilities, a with the constraint that CHES 0, i.e., no transition

g9,
back to the same state can occur.
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Explicit State Duration Density

(a)

(b)

HMM with explicit state duration density
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Explicit State Duration Density

t 1 d,+1 d,+d, +1
State CI1 q2 q3
duration d, d, d,
observations O1...OC,1 Od1+1...00,1+c,2 Od1+d2+1...0d1+d2+d3

Assume:
1. first state, q,, begins at { =1
2. last state, q,, ends att =T
= entire duration intervals are included within the observation
sequence O,0,...0O;
Modified «:

a,(i)=P(0,0,...0,,S; ending at t| 1)
Assume r states in first t observations, i.e.,
Q=1{9,q,...9,} withg, =S,

D={d,d,..d} with >d, =t
s=1

58



Explicit State Duration Density

Then we have
a, ()= Zzﬂ%p% (d, )P(O1Oz...0d1 19,)
qg d

“84.4,Pq, (d, )P(Od 1 Od +d, 19,)...

r—

By induction:

o (j)=2. 2 e qli)a; py(d) TT b;,(0)

i=1 d=1 s=t—d+1

Initialization of «,(/):
a1(i) - ”ipi(1)bi(o1)

az(i) - ”/pi(z)]:[ b/(os ) + Z a1(j)aji p/(1)b/(02)

Jj=1,j=i
3
as(l) = H b.(O )+Z Z o, 4(f)a; p,(d) H b.(O,)
d=1j=1,j=i s=4-d

P(O12)= Y ;i)
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Explicit State Duration Density

- re-estimation formulas for a;, b,(k), and p;(d) can be formulated
and appropriately interpreted
- modifications to Viterbi scoring required, i.e.,
o,(i)=P(00,..0,,q9,...q, =S, ending at t|O)

Basic Recursion:

t

5t(i): max max|:5t—d(j)aji pi(d) H bj(os):|

1<j<N, j=i 1<d<D S=t—d+1

- storage required for 6, ,...0, , = N -D locations

- maximization involves all terms--not just old J's and a; as in
previous case = significantly larger computational load
~(D?/2)N*T computations involving b;(O)

Example: N=5,D =20

implicit duration explicit duration

storage 3 100
computation 2500 500,000
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Issues with Explicit State Duration
Density

1. quality of signal modeling is often improved significantly
2. significant increase in the number of parameters per state
(D duration estimates)
3. significant increase in the computation associated with probability
calculation ( = D*/2)
4. insufficient data to give good p,(d) estimates
Alternatives :
1. use parametric state duration density
p.(d)=N(d, 1,c?) -- Gaussian
Vi Vi1 —;d
p(d)=" C;(V,e)
2. incorporate state duration information after probability
calculation, e.g., in a post-processor

-- Gamma
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Alternatives to ML Estimation

Assume we wish to design V different HMM's, A, 4,,..., 4,.
Normally we design each HMM, 4,,, based on a training set of

observations, 0", using a maximum likelihood (ML) criterion, i.e.,

P, :mfo[OVMV]

Consider the mutualinformation, /,, between the observation

sequence, OY, and the complete set of models 1 =(A,4,,..., 4, ),
17772

by {lOgP(OV I%)—'OQZP(OV Iﬂw)}

Consider maximizing /, over A, giving

I :m?x{logP(OV MV)—IogiP(OV |/1W)}

- choose 1 so as to separate the correct model, 4,, from all

other models, as much as possible, for the training set, 0" . 62



Alternatives to ML Estimation

Sum over all such training sets to give models according to an MMI
criterion, I.e.,

4

[“ = max {Z{IOQ(P(OV |4, ) - Iogi P(O" |4, )}}

v=1

« solution via steepest descent methods.
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Comparison of HMM'’s

Problem: given two HMM's, A, and 4,, is it possible to give a
measure of how similar the two models are

p p r r
Example : 1—p 1—r

1-p 1—r

1-—- 1-—- r1—r s 1—s
A= P p B, = q q A,- B, .
1-p p 1—q q 1=r r 1-s s

equivalent

For (A,B,) < (A, B,) we require P(O, =v,) to be the same
for both models and for all symbols v,. Thus we require
pg+(1-p)1-q)=rs+(1-r)(1-s)
2pQ—p—-q=2rs=r=S8
o p+1-2pg-r
1-2r
Let p=0.6,qg=0.7,r =0.2, then
$=13/30=0.433
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Comparison of HMM'’s

Thus the two models have very different A and B matrices, but are
equivalent in the sense that all symbol probabilities (averaged over
time) are the same.

We generalize the concept of model distance (dis-similarity) by
defining a distance measure, D(4,,4,) between two Markov sources,
A, and A,, as

D(2,22) = 7{IogP(O% 1) ~log PO | ,)]

where O{*) is a sequence of observations generated by model 4,,
and scored by both models.
We symmetrize D by using the relation:

Ds(4,4;,) = 1[D(/11,/12)+D(22,Z1 )]
2
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Implementation Issues for HMM’s

1. Scaling—to prevent underflow
and/or overflow.

2. Multiple Observation Sequences—to
train left-right models.

3. Initial Estimates of HMM
Parameters—to provide robust
models.

4. Effects of Insufficient Training Data

6



Scaling

- a,(/) is a sum of a large number of terms, each of the form:
t-1 t
e 116,00

since each a and b term is less than 1, as t gets larger, «,(/)

exponentially heads to 0. Thus scaling is required to prevent
underflow.

- consider scaling ¢, (i) by the factor

C, =

~ = independent of ¢
2 a(i)
i=1

- we denote the scaled «'s as:
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Scaling

- for fixed t, we compute

a,(i) = Nj=1N
ZZ“At—1(I)aﬂ b/(ot)
i=1 j=1
« by induction we get
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Scaling

- for scaling the g,(i) terms we use the same scale factors as for
the «, (i) terms, i.e.,
Bt(i) = Ctﬁt(i)
since the magnitudes of the o and f terms are comparable.
- the re-estimation formula for a; in terms of the scaled a's

and f's is:

O’Zt(i)aij bj(ot+1 )ﬁAt+1(j)

> 2.6 (1)a; b,(0,,)B4(J)

« we have

a, () = |:]jcr:|at(i) =G, (i)

ﬁAt+1(j) = |:H Cr:|ﬁt+1(j) — Dt+1ﬁt+1(j)
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Scaling

« giving
T-1

that I)alj i t+1) +1ﬂt+1( )

A t=1
a;

N T-1
ZZCta (i aljbj(ot+1 D, B,.4(J)
j=1 t=
t T
C Dt+1 HC H HCr = C
r=t+1 =1

- independent of t.

Notes on Scaling :

1. scaling procedure works equally well on 7 or B coefficients

2. scaling need not be performed each iteration; set ¢, =1 whenever scaling is skipped
c. can solve for P(O|A) from scaled coefficients as:

ﬁctiaT(i):CiaT(i):1
P(om):ﬁ:ar(i)zwﬁct

0gP(014) =~ log(c,)
= 70



Multiple Observation Sequences

For left-right models, we need to use multiple sequences of observations for training.
Assume a set of K observation sequences (i.e., training utterances):

0=0",0%,..,0%]
where
o® = ofo...0 |

We wish to maximize the probability

K
P(O| ) HPO"‘ 2 =T~
k=1

K 1 T,
13 dt0)a,b,OMAL)
= k=1 t=1
Ij: kK1Tk_1Ak."k.
— / /
;Pk tZ, ag (1) (i)

- all scaling factors cancel out



Initial Estimates of HMM
Parameters

N -- choose based on physical considerations
M -- choose based on model fits

7, -- random or uniform (z; # 0)

a; -- random or uniform (a; = 0)

b;(k) -- random or uniform (b;(k) = ¢)

b,(O) -- need good initial estimates of mean vectors;

need reasonable estimates of covariance matrices
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Effects of Insufficient Training
Data

Insufficient training data leads to poor estimates of model parameters.
Possible Solutions:
1. use more training data--often this is impractical
2. reduce the size of the model--often there are physical reasons for
keeping a chosen model size
3. add extra constraints to model parameters
bi(k)z e
U,(r,ryzo
- often the model performance is relatively insensitive to exact choice
of g, 0
4. method of deleted interpolation
A=el+(1-g)A’
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Methods for Insufficient Data
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Deleted Interpolation
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Isolated Word Recognition Using
HMM’s

Assume a vocabulary of V words, with K occurrences of each spoken word
in a training set. Observation vectors are spectral characterizations of the word.
For isolated word recognition, we do the following:
1. for each word, v, in the vocabulary, we must build an HMM, 1", i.e., we
must re-estimate model parameters (A,B,H) that optimize the likelihood of the
training set observation vectors for the v-th word. (TRAINING)
2. for each unknown word which is to be recognized, we do the following:
a. measure the observation sequence O =|0,0,...0; |

b. calculate model likelihoods, P(O|4"),1<v <V
c. select the word whose model likelihood score is highest

v® =argmax [P(O| Y )]

1<vv
Computation is on the order of V-N?T required; V =100, N =5, T =40

—10° computations
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Isolated Word HMM Recognizer

HMM FOR
WORD 1
1
_|PROBABILITY | P(OIA)
’| COMPUTATION
SPEECH LPC OBSERVATION HMM FOR
SIGNAL | egaTURE | SEQUENCE WORD 2 INDEX OF
S ANALYSIS, | O RECOGNIZED
g 2 WORD
gffg?ﬁ | PROBABILITY | P(OIX%)
ZATION) COMPUTATION > v*= ARGMAX [P(O I XU)]
T SELECT 1svsV R
+ | MAXIMUM -

v

HMM FOR
WORD V

\")
PROBABILITY | P(OIXN)
COMPUTATION

v




1.

2.

3.

4.

Choice of Model Parameters

Left-right model preferable to ergodic model (speech is a left-right
process)
Number of states in range 2-40 (from sounds to frames)
. Order of number of distinct sounds in the word
. Order of average number of observations in word
Observation vectors

. Cepstral coefficients (and their second and third order derivatives)
derived from LPC (1-9 mixtures), diagonal covariance matrices

. Vector quantized discrete symbols (16-256 codebook sizes)
Constraints on b,(O) densities

. bj(k)>¢ for discrete densities

. ij>5, Ujm(r,r)>6 for continuous densities

78



Performance Vs Number of
States in Model
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HMM Feature Vector Densities

WORD: ZERO, STATE |

i B c2
4 2V 0 n
del -1.113 0.254 -0.364 0.797
L | L 1
R c4 i C5_] B
— _ i B B
= - - L L
D — — —
3 B
o - - -
1 1 1 1 1 | 1 | A m
-0.527 0435 -055 0.223 -0.579 0.272

| T |
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I I T T O
| L L

| T T |

T T T T T T T 11

1 ¥ 1 1
-0.435 0.366 -0483 0.375 -44.20 -4.112
PARAMETER RANGE
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Segmental K-Means
Segmentation into States

Motivation:
derive good estimates of the b,(O) densities as required for rapid
convergence of re-estimation procedure.
Initially:
training set of multiple sequences of observations, initial model estimate.
Procedure:

segment each observation sequence into states using a Viterbi procedure.
For discrete observation densities, code all observations in state j using
the M-codeword codebook, giving
bi(k) = number of vectors with codebook index k, in state j, divided by the
number of vectors in state j.
for continuous observation densities, cluster the observations in state j into
a set of M clusters, giving
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Segmental K-Means
Segmentation into States

C;, = hnumber of vectors assigned to cluster m of state j divided
by the number of vectors in state j.

U;m = sample mean of the vectors assigned to cluster m of state

J
U. = sample covariance of the vectors assigned to cluster m of

jm

state |

use as the estimate of the state transition probabilities

a; = number of vectors in state / minus the number of
observation sequences for the training word divided by the

number of vectors in state i.
s = 1—

the segmenting HMM is updated and the procedure is
iterated until a converged model is obtained.
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Segmental K-Means Training

MODEL
INITIALIZATION

J: A
STATE SEQUENCE
SEGMENTATION

——

¥

ESTIMATE PARAMETERS
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K-MEANS

A
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HMM Segmentation for /SIX/
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Digit Recognition Using HMM'’s

0.0
-]
o
unknown
-52.32
log
0.0
energy

o

_—52.32

23.57
.
P
frame !

. . 0.583

likelihood
19.304
scores

.
P
2

-2.687

stringl-(vi,vi+sdur): 15.562 14.808
string2-(vi,vit+sdur): 10.977 10.256
4 ssr:

string: 1
string: 9
6025.

L] L Ll L]

sequence no:

19.912

1 1 1 1 1 L ' L 1
= 0o

15.44
36.

o

16.308

I T T T T S N B |

[0 - B - T

7.071

10.0

L g+

1.0

10.0

It T S N N 1
L T - = ]

frame number 36.0

acfile:/data/tidata/acdata.29

frame
cumulative
scores

L]
L
15.6
1.0 frame number 36.
T L T
- nine )
11.0
1.0 frame number 36.0
1.0 36.0
. seg
[ ]
C ]
[~ -
L L
36
1.0+~ frame number 36.0

e

mentation

85



Digit Recognition Using HMM'’s
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HMM PERFORMANCE ON SPEAKER INDEPENDENT,

ISOLATED DIGITS
Original
Recognizer |Training | Test | Test | Test
Type Set Set 2 | Set3 | Set 4
LPC/DTW 0.1 0.2 2.0 1.1
LPC/DTW/VQ - 3.5 — -
HMM/VQ - 3.7 — -
HMM/CD 0 0.2 1.3 1.8
HMM/AR 0.3 1.8 3.4 4.1

AVERAGE DIGIT ERROR RATES (%)
LPC/DTW - Conventional template-based recognizer using
dynamic time warping (DTW) alignment.

LPC/DTW/VQ - Conventional recognizer with vector quantization
(M = 64 codebook).

HMM/VQ - HMM Recognizer with M = 64 codebook.

HMM/CD - HMM recognizer using continuous density model
with 5 mixtures per state.

MHH/AR - HMM recognizer using mixture autoregressive
observation density.



